Sarvtor.ru

SarVtor.Ru
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Удельная теплоемкость кирпича физика

Удельная теплоемкость кирпича физика

Физические величины имеют высокую значимость при выборе материала для строительства здания.

Рассмотрим основные показатели, используемые в строительстве, например, чтобы разобраться, что такое удельная теплоемкость кирпича, необходимо выяснить, что представляет собой данная физическая величина.

Кирпич

  • Теплоемкость. По сути, удельная теплоёмкость определяется количеством тепла, требуемого для нагрева одного килограмма вещества на один градус Цельсия (на один Кельвин).
  • Теплопроводность.Не менее важным физическим показателем кирпичного сооружения является способность передачи тепла при разных температурах снаружи и внутри здания, называемая коэффициентом теплопроводности. Этот параметр выражает, какое количество тепла, теряется за 1 метр толщины стены при различии температуры на 1 градус между наружной и внутренней областью.
  • Теплопередача. Коэффициент теплопередачи кирпичной стены будет во многом зависеть от того, какой вид материала для кирпичной кладки вы выберете. Чтобы определить данный коэффициент для многослойной стены, требуется знать этот параметр для каждого слоя в отдельности. Затем складываются все величины, так как суммарный коэффициент термосопротивления является суммой сопротивлений всех слоев, входящих в стену.

Коэффициент теплопроводности кирпича и пеноблока

Обратите внимание!
Полнотелые кирпичи обладают довольно высоким коэффициентом теплопроводности и поэтому гораздо более экономично применение пустотелого вида.
Это происходит из-за того, что воздух в пустотах обладает более низкой теплопроводностью, а значит, стены сооружения будут значительно тоньше.

  • Сопротивление теплопередаче. Сопротивление теплопередаче кирпичной стены определяется как отношение разности температур на краях строительной конструкции к количеству тепла проходящего через него. Данный параметр используется для отражения свойств материалов и выражается отношением плотности материала к его теплопроводности.
  • Теплотехническая однородность. Коэффициент теплотехнической однородности кирпичной стены это параметр равный обратному отношению потока тепла через стену к количеству тепла, проходящего через условное ограждающее сооружение равное по площади стене.

Таблица для сравнения

Обратите внимание!
Инструкция о том, как рассчитать данный параметр, довольно сложна, поэтому этим лучше заниматься компаниям, имеющим опыт и соответствующие приборы для определения тех или иных показателей.

По сути, коэффициент теплотехнической однородности для кирпичной кладки выражает, сколько и какую интенсивность имеют «мостики холода» в данной ограждающей конструкции. В большинстве случаев данная величина колеблется в пределах 0,6-0,99, причём за единицу берется полностью однородная стена, не имеющая теплопроводных изъянов.

Сравнительная характеристика основных строительных материалов по базовым показателям

  1. Виды кирпича
  2. Силикатный
  3. Керамический
  4. Теплая керамика
  5. Резюме

Керамический

Полезная информация:

  • Плотность кирпича разных видов
  • Плюсы и минусы керамического кирпича
  • Водопоглощение керамического кирпича
  • Раствор для кладки кирпича
  • Плюсы и минусы силикатного кирпича

Исходя из технологии производства, кирпич классифицируется на керамическую и силикатную группы. При этом оба вида имеют значительные отличия по плотности материала, удельной теплоемкости и коэффициенту теплопроводности. Сырьем для изготовления керамического кирпича, еще его называют красным, выступает глина, в которую добавляют ряд компонентов. Сформированные сырые заготовки подвергаются обжигу в специальных печах. Показатель удельной теплоемкости может колебаться в пределах 0,7-0,9 кДж/(кг·K). Что касается средней плотности, то она обычно находится на уровне 1400 кг/м3.

Читайте так же:
Динас есть такой кирпич

Среди сильных сторон керамического кирпича можно выделить:

1. Гладкость поверхность. Это повышает его внешнюю эстетичность и удобство укладки. 2. Стойкость к морозу и влаге. В обычных условиях стены не нуждаются в дополнительной влаго- и термоизоляции. 3. Способность переносить высокие температуры. Это позволяет использовать керамический кирпич для возведения печей, мангалов, жаропрочных перегородок. 4. Плотность 700-2100 кг/м3. На эту характеристику непосредственно влияет наличие внутренних пор. По мере увеличения пористости материала уменьшается его плотность, и возрастают теплоизоляционные характеристики.

Лего-кирпич: что это такое и характеристики

Силикатный

Что касается силикатного кирпича, то он бывает полнотелым, пустотелым и поризованным. Исходя из размеров, различают одинарные, полуторные и двойные кирпичи. В среднем силикатный кирпич обладает плотностью 1600 кг/м3. Особенно ценятся шумопоглощающие характеристики силикатной кладки: даже если речь идет о стене небольшой толщины, уровень ее звукоизоляции будет на порядок выше, чем в случае применения других типов кладочного материала.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Удельная теплоёмкость серебра 250 Дж/(кг · °С). Что это означает?

1) при остывании 1 кг серебра на 250 °С выделяется количество теплоты 1 Дж
2) при остывании 250 кг серебра на 1 °С выделяется количество теплоты 1 Дж
3) при остывании 250 кг серебра на 1 °С поглощается количество теплоты 1 Дж
4) при остывании 1 кг серебра на 1 °С выделяется количество теплоты 250 Дж

2. Удельная теплоёмкость цинка 400 Дж/(кг · °С). Это означает, что

1) при нагревании 1 кг цинка на 400 °С его внутренняя энергия увеличивается на 1 Дж
2) при нагревании 400 кг цинка на 1 °С его внутренняя энергия увеличивается на 1 Дж
3) для нагревания 400 кг цинка на 1 °С его необходимо затратить 1 Дж энергии
4) при нагревании 1 кг цинка на 1 °С его внутренняя энергия увеличивается на 400 Дж

3. При передаче твёрдому телу массой ​ ( m ) ​ количества теплоты ​ ( Q ) ​ температура тела повысилась на ​ ( Delta t^circ ) ​. Какое из приведённых ниже выражений определяет удельную теплоёмкость вещества этого тела?

4. На рисунке приведён график зависимости количества теплоты, необходимого для нагревания двух тел (1 и 2) одинаковой массы, от температуры. Сравните значения удельной теплоёмкости (​ ( c_1 ) ​ и ​ ( c_2 ) ​) веществ, из которых сделаны эти тела.

1) ​ ( c_1=c_2 ) ​
2) ​ ( c_1>c_2 ) ​
3) ( c_1
4) ответ зависит от значения массы тел

5. На диаграмме представлены значения количества теплоты, переданного двум телам равной массы при изменении их температуры на одно и то же число градусов. Какое соотношение для удельных теплоёмкостей веществ, из которых изготовлены тела, является верным?

Читайте так же:
Кирпич террориста 6 букв

1) ( c_1=c_2 )
2) ( c_1=3c_2 )
3) ( c_2=3c_1 )
4) ( c_2=2c_1 )

6. На рисунке представлен график зависимости температуры твёрдого тела от отданного им количества теплоты. Масса тела 4 кг. Чему равна удельная теплоёмкость вещества этого тела?

1) 500 Дж/(кг · °С)
2) 250 Дж/(кг · °С)
3) 125 Дж/(кг · °С)
4) 100 Дж/(кг · °С)

7. При нагревании кристаллического вещества массой 100 г измеряли температуру вещества и количество теплоты, сообщённое веществу. Данные измерений представили в виде таблицы. Считая, что потерями энергии можно пренебречь, определите удельную теплоёмкость вещества в твёрдом состоянии.

1) 192 Дж/(кг · °С)
2) 240 Дж/(кг · °С)
3) 576 Дж/(кг · °С)
4) 480 Дж/(кг · °С)

8. Чтобы нагреть 192 г молибдена на 1 К, нужно передать ему количество теплоты 48 Дж. Чему равна удельная теплоёмкость этого вещества?

1) 250 Дж/(кг · К)
2) 24 Дж/(кг · К)
3) 4·10 -3 Дж/(кг · К)
4) 0,92 Дж/(кг · К)

9. Какое количество теплоты необходимо для нагревания 100 г свинца от 27 до 47 °С?

1) 390 Дж
2) 26 кДж
3) 260 Дж
4) 390 кДж

10. На нагревание кирпича от 20 до 85 °С затрачено такое же количество теплоты, как для нагревания воды такой же массы на 13 °С. Удельная теплоёмкость кирпича равна

1) 840 Дж/(кг · К)
2) 21000 Дж/(кг · К)
3) 2100 Дж/(кг · К)
4) 1680 Дж/(кг · К)

11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Количество теплоты, которое тело получает при повышении его температуры на некоторое число градусов, равно количеству теплоты, которое это тело отдаёт при понижении его температуры на такое же число градусов.
2) При охлаждении вещества его внутренняя энергия увеличивается.
3) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение кинетической энергии его молекул.
4) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение потенциальной энергии взаимодействия его молекул
5) Внутреннюю энергию тела можно изменить, только сообщив ему некоторое количество теплоты

12. В таблице представлены результаты измерений массы ​ ( m ) ​, изменения температуры ​ ( Delta t ) ​ и количества теплоты ​ ( Q ) ​, выделяющегося при охлаждении цилиндров, изготовленных из меди или алюминия.

Какие утверждения соответствуют результатам проведённого эксперимента? Из предложенного перечня выберите два правильных. Укажите их номера. На основании проведенных измерений можно утверждать, что количество теплоты, выделяющееся при охлаждении,

1) зависит от вещества, из которого изготовлен цилиндр.
2) не зависит от вещества, из которого изготовлен цилиндр.
3) увеличивается при увеличении массы цилиндра.
4) увеличивается при увеличении разности температур.
5) удельная теплоёмкость алюминия в 4 раза больше, чем удельная теплоёмкость олова.

Читайте так же:
Что входит с состав кирпича

Часть 2

C1.Твёрдое тело массой 2 кг помещают в печь мощностью 2 кВт и начинают нагревать. На рисунке изображена зависимость температуры ​ ( t ) ​ этого тела от времени нагревания ​ ( tau ) ​. Чему равна удельная теплоёмкость вещества?

1) 400 Дж/(кг · °С)
2) 200 Дж/(кг · °С)
3) 40 Дж/(кг · °С)
4) 20 Дж/(кг · °С)

Что такое удельная теплоемкость стали и других материалов: терминология + расчётные особенности

Простой эксперимент выше четко дает понять, что у каждого химического элемента имеется собственный физический показатель, именуемый удельной теплоемкостью. В рамках нашего сайта вопрос рассматривается для стали и ее сплавов, ибо в черной/цветной металлургии оговоренный параметр крайне важен. Давайте рассмотрим термин «удельная теплоемкость» и особенность стали поподробнее.

1) Понятие удельной теплоемкости

Термин состоит из 2 слов – удельная и теплоемкость. Для простоты усвоения полного, разберем частное. Теплоемкостью называют количество поглощаемой теплоты при нагревании на температуру в 1 кельвин.

Более точное определение дается в учебнике 8 класса – физическая величина, просчитывающаяся как отношение количества теплоты в бесконечно малой смене температуры, к показателю этого изменения.

Теперь перейдём к удельной теплоемкости. В международной системе единиц величина представляется как заглавная/прописная латинская «С» , а единица измерения величины одна из двух – Джоули на килограммы, перемноженные на кельвины (Дж/(кг•К), или калории, деленные на килограммы, умноженные на градусы Цельсия (калория/(кг•°C). Второй вариант относится к одному из многих вариантов внесистемных единиц.

Важно: удельная теплоемкость напрямую зависит от значения температуры, а потому, в науке более точным считается формула со значениями, которые формально бесконечно малы.

В промышленности удельная теплоемкость с предельно минимальными значениями почти не используется поэтому в дальнейшем будет рассмотрена исключительно классическая формулировка формулы расчёта.

2) Что такое сталь: особенности материала + классификация

Преимущества сталиНедостатки материала
Материал с высокими показателями прочности + обилие свойств, что обуславливается различными добавками и способами обработки стали.Слабая стойкость классической стали к коррозии. Частично решает проблему покрытие нержавейкой/полимером. Нержавеющая сталь в 3-10 раз дороже своего «черного» собрата.
Хорошая вязкость с упругостью, что позволяет применять материал в местах как с динамическими, так и статическими нагрузками.Из-за накопления электричества повышается электромеханическая коррозия.
Низкий показатель износостойкости, что обеспечивает материалу эксплуатационную долговечность.Конструкции из стали имеют большой вес, что может усложнить монтаж/демонтаж и даже эксплуатацию.
Экономически обоснованный вариант сырья, ибо добыча железа по себестоимости в десятки раз ниже, нежели другие типы металлов периодической системы.Мельчайшие неточности в многоэтапном процессе изготовления стали оборачиваются фатальными провалами в качестве итоговой продукции.

Благодаря простоте сгибания, нарезания и сварки, стальные конструкции, часто используемые не только в промышленных масштабах, но и в домашнем хозяйстве. В зависимости от способа производства, свойства сплава могут варьироваться очень сильно. И удельной теплоемкости это касается, в том числе.

ПараметрКомпоненты + описание
По химическому составуУглеродистые . Легирующим элементом выступает углерод. В зависимости от его доли в сплаве, идет подразделение на малоуглеродистые (менее 0.3%), среднеуглеродистые (от 0.3% до 0.8%) и высокоуглеродистые (более 0.7%).
Легированные . Здесь также 3 подгруппы в зависимости от долевого вхождения примесей – меньше 2.5%, от 2.5% до 10%, и более 10%. Низко-, средне-, и высоколегированные соответственно. Добавками могут быть как металлы, так и неметаллические вещества. Самая популярная из легированных сталей – нержавейка.
По структурному составуПерлитная . Разновидности стали с низким содержанием углерода.
Мартенситные . В сплаве большое количество примесей.
Аустенитная. Высоколегированная сталь.
По раскислителюСпокойная . В сплаве не содержится закись железа, что делает металл однородным и стабильным. Используется не часто из-за дороговизны производства.
Полуспокойная . Твердеет без кипения, но сопутствующие газы выделяются + часть из них остается в сплаве и после отвердевания. Сталь используется в конструкционных целях.
Кипящая . С содержанием газов в остывшем материале. Из-за этого слабо пригоден к сварке. По технологии изготовления – это самый дешевый вариант, потому используется для большинства простых конструкций.
По назначениюСтроительная . Обычные и низколегированные разновидности стали с хорошими показателями свариваемости. Используются в конструкциях с высокими статическими нагрузками.
Инструментальная. Относят стали с высоким содержанием углерода и сторонних примесей (более 20%). В категории имеется классификация на штампованные, измерительные и режущие.
Конструкционные . Сплавы имеют незначительное содержание марганца. Основная область применения – узловые элементы конструкций. Из-за необходимости разнообразия в свойствах, в категории популярные среднелегированные стали.
Специальные . По сути, это специфические разновидности конструкционных сталей. Специализированное назначение – устойчивость к жару, кислоте и другим агрессивным средам.
По примесямРядовые . Содержание серы и фосфора не более 7 сотых процента.
Качественные . Долевое содержание серы меньше 0.04% и фосфора меньше 0.35%. По изготовлению обходятся дороже, но в отношении механических свойств – куда лучше.
Высококачественные . Долевое содержание серы и фосфора менее 0.025%. Технология изготовления – электрические печи, где требуется низкое вкрапление неметаллических примесей.
Особовысококачественные . Элита среди стали. Процентное содержание серы менее 0.015%, а фосфора менее 0.025%.

Вдаваться в тонкости производства не будем, но вы должны понимать, что удельная теплоемкость марки стали напрямую зависит от методов ее производства. В 2020 году выделяют 4 метода изготовления стальных сплавов – мартеновский, кислотно-конвертерный, электроплавильный и прямой. По своей сути, производство стальных сплавов – это переработка чугуна с отжиганием излишних примесей и введением легирующих компонентов. И чем дороже сырье/технология, тем лучше результат.

Многие теплоемкие материалы применяют активно при строительстве теплоустойчивых стен. Это крайне важно для домов, отличающихся периодическим отоплением. Например, печным. Теплоемкие изделия и стены, возведенные из них, отлично аккумулируют тепло, запасают его в отопительные периоды времени и поэтапно отдают тепло после выключения системы, позволяя таким образом поддерживать приемлемую температуру на протяжении суток.

Итак, чем больше будет запасено тепла в конструкции, тем комфортней и стабильней будет температура в комнатах.

Стоит отметить, что обычный кирпич и бетон, применяемые в домостроении, обладают значительно меньшей теплоемкостью, чем пенополистирол. Если брать эковату, то она в три раза более теплоемкая, нежели бетон. Следует отметить, что в формуле расчета теплоемкости совершенно не зря присутствует масса. Благодаря большой огромная массе бетона или кирпича в сравнении с эковатой позволяет в каменных стенах конструкций аккумулировать огромные объемы тепла и сглаживать все суточные температурные колебания. Только малая масса утеплителя во всех каркасных домах, несмотря на хорошую теплоемкость, является самой слабой зоной у всех каркасных технологий. Чтобы решить данную проблему, во всех домах монтируют внушительные теплоаккумуляторы. Что это такое? Это конструктивные детали, отличающиеся большой массой при достаточно хорошем показателе теплоемкости.

Как по графику нагревания или охлаждения определить удельную теплоемкость

На примере покажем, как находить удельную теплоемкость по графику нагревания или охлаждения тела.

Дано твердое тело массой 2 килограмма. На рисунке 5 указано, как зависит температура этого тела от полученного количества теплоты. По горизонтали отложено количество теплоты, а по вертикали – температура некоторого тела, находящегося в твердом состоянии.

Определить удельную теплоемкость вещества, из которого состоит данное твердое тело.

Решение:

Тело нагрелось от (large t_ <1>= 0 left( С right) ) до температуры (large t_ <2>= 60 left( С right) );

Разность температур равна 60 градусам Цельсия.

Масса тела 2 килограмма.

Полученное количество теплоты (large Q = 15000 left( text <Дж>right) ).

Выпишем формулу, по которой можно посчитать тепловую энергию Q:

Подставим теперь значения в эту формулу для определения количества теплоты:

[large 15000 = c cdot 2 cdot 60 ]

Разделим обе части уравнения на число 10:

[large 1500 = c cdot 2 cdot 6 ]

Теперь разделим обе части уравнения на число 6:

[large 250 = c cdot 2 ]

Разделив обе части на число 2, получим удельную теплоемкость твердого вещества:

Ответ: Удельная теплоемкость твердого вещества (large 125 left( frac> cdot text<град>> right) )

Примечание: Тела могут обмениваться тепловой энергией с другими телами. Обмен энергией прекратится при наступлении теплового равновесия. Для решения задач нужно использовать удельные теплоемкости материалов, из которых изготовлены тела. А чтобы рассчитать переданное или полученное телом количество теплоты, нужно уметь применять закон сохранения энергии и составлять уравнение теплового баланса.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector